Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 619(7969): 403-409, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285872

RESUMO

The entry of SARS-CoV-2 into host cells depends on the refolding of the virus-encoded spike protein from a prefusion conformation, which is metastable after cleavage, to a lower-energy stable postfusion conformation1,2. This transition overcomes kinetic barriers for fusion of viral and target cell membranes3,4. Here we report a cryogenic electron microscopy (cryo-EM) structure of the intact postfusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membrane-interacting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.


Assuntos
Microscopia Crioeletrônica , Bicamadas Lipídicas , Fusão de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/virologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Internalização do Vírus
2.
bioRxiv ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36523411

RESUMO

Entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells depends on refolding of the virus-encoded spike protein from a prefusion conformation, metastable after cleavage, to a lower energy, stable postfusion conformation. This transition overcomes kinetic barriers for fusion of viral and target cell membranes. We report here a cryo-EM structure of the intact postfusion spike in a lipid bilayer that represents single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membraneinteracting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.

3.
Sci Immunol ; 7(78): eabp8328, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35549298

RESUMO

Key features of immune memory are greater and faster antigen-specific antibody responses to repeat infection. In the setting of immune-evading viral evolution, it is important to understand how far antibody memory recognition stretches across viral variants when memory cells are recalled to action by repeat invasions. It is also important to understand how immune recall influences longevity of secreted antibody responses. We analyzed SARS-CoV-2 variant recognition; dynamics of memory B cells; and secreted antibody over time after infection, vaccination, and boosting. We find that a two-dose SARS-CoV-2 vaccination regimen given after natural infection generated greater longitudinal antibody stability and induced maximal antibody magnitudes with enhanced breadth across Beta, Gamma, Delta and Omicron variants. A homologous third messenger RNA vaccine dose in COVID-naïve individuals conferred greater cross-variant evenness of neutralization potency with stability that was equal to the hybrid immunity conferred by infection plus vaccination. Within unvaccinated individuals who recovered from COVID, enhanced antibody stability over time was observed within a subgroup of individuals who recovered more quickly from COVID and harbored significantly more memory B cells cross-reactive to endemic coronaviruses early after infection. These cross-reactive clones map to the conserved S2 region of SARS-CoV-2 spike with higher somatic hypermutation levels and greater target affinity. We conclude that SARS-CoV-2 antigen challenge histories in humans influence not only the speed and magnitude of antibody responses but also functional cross-variant antibody repertoire composition and longevity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Anticorpos
4.
Front Microbiol ; 13: 820089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558126

RESUMO

In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.

5.
Cell Rep ; 39(4): 110729, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452593

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutação/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
6.
Am J Obstet Gynecol ; 227(3): 493.e1-493.e7, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35430229

RESUMO

BACKGROUND: SARS-CoV-2 infection is associated with enhanced disease severity in pregnant women. Despite the potential of COVID-19 vaccines to reduce severe disease, vaccine uptake remained relatively low among pregnant women. Just as coordinated messaging from the Centers for Disease Control and Prevention and leading obstetrics organizations began to increase vaccine confidence in this vulnerable group, the evolution of SARS-CoV-2 variants of concerns, including the Omicron variant, raised new concerns about vaccine efficacy because of their ability to escape vaccine-induced neutralizing antibodies. Early data point to a milder disease course following infection with the Omicron variant in vaccinated individuals. Thus, these data suggest that alternate vaccine-induced immunity beyond neutralization may continue to attenuate Omicron variant-induced disease, such as Fc-mediated antibody activity. OBJECTIVE: This study aimed to test whether vaccine-induced antibodies raised during pregnancy continue to bind to and leverage Fc receptors to protect against variants of concern including the Omicron variant. STUDY DESIGN: The receptor binding domain or whole spike-specific antibody isotype binding titers and Fc gamma receptor binding directed toward variants of concern, including the Omicron variant, were analyzed in pregnant women after receiving the full dose regimen of either the Pfizer/BioNTech BNT62b2 (n=10) or Moderna mRNA-1273 (n=10) vaccination using a multiplexing Luminex assay. RESULTS: Reduced isotype recognition of the Omicron receptor binding domain was observed following administration of either vaccine with relatively preserved, albeit reduced, recognition of the whole Omicron spike by immunoglobulin M and G antibodies. Despite the near complete loss of Fc receptor binding to the Omicron receptor binding domain, Fc receptor binding to the Omicron spike was more variable but largely preserved. CONCLUSION: Reduced binding titers to the Omicron receptor binding domain aligns with the observed loss of neutralizing activity. Despite the loss of neutralization, preserved, albeit reduced, Omicron spike recognition and Fc receptor binding potentially continue to attenuate disease severity in pregnant women.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Vacinas , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , RNA Mensageiro , Receptores Fc , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
Sci Transl Med ; 14(642): eabn9243, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35289637

RESUMO

The Omicron variant of SARS-CoV-2 has been shown to evade neutralizing antibodies elicited by vaccination or infection. Despite the global spread of the Omicron variant, even among highly vaccinated populations, death rates have not increased concomitantly. These data suggest that immune mechanisms beyond antibody-mediated virus neutralization may protect against severe disease. In addition to neutralizing pathogens, antibodies contribute to control and clearance of infections through Fc effector mechanisms. Here, we probed the ability of vaccine-induced antibodies to drive Fc effector activity against the Omicron variant using samples from individuals receiving one of three SARS-CoV-2 vaccines. Despite a substantial loss of IgM, IgA, and IgG binding to the Omicron variant receptor binding domain (RBD) in samples from individuals receiving BNT162b2, mRNA-1273, and CoronaVac vaccines, stable binding was maintained against the full-length Omicron Spike protein. Compromised RBD binding IgG was accompanied by a loss of RBD-specific antibody Fcγ receptor (FcγR) binding in samples from individuals who received the CoronaVac vaccine, but RBD-specific FcγR2a and FcγR3a binding was preserved in recipients of mRNA vaccines. Conversely, Spike protein-specific antibodies exhibited persistent but reduced binding to FcγRs across all three vaccines, although higher binding was observed in samples from recipients of mRNA vaccines. This was associated with preservation of FcγR2a and FcγR3a binding antibodies and maintenance of Spike protein-specific antibody-dependent natural killer cell activation. Thus, despite the loss of Omicron neutralization, vaccine-induced Spike protein-specific antibodies continue to drive Fc effector functions, suggesting a capacity for extraneutralizing antibodies to contribute to disease control.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , RNA Mensageiro/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de mRNA
8.
Science ; 374(6573): 1353-1360, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34698504

RESUMO

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.


Assuntos
Evasão da Resposta Imune , Fusão de Membrana , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Antígenos Virais/imunologia , Linhagem Celular , Epitopos/imunologia , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de Coronavírus/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia
9.
Curr Opin Virol ; 50: 173-182, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34534731

RESUMO

The COVID-19 (coronavirus disease 2019) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to loss of human life in millions and devastating socio-economic consequences worldwide. The disease has created urgent needs for intervention strategies to control the crisis and meeting these needs requires a deep understanding of the structure-function relationships of viral proteins and relevant host factors. The trimeric spike (S) protein of the virus decorates the viral surface and is an important target for development of diagnostics, therapeutics and vaccines. Rapid progress in the structural biology of SARS-CoV-2 S protein has been made since the early stage of the pandemic, advancing our knowledge on the viral entry process considerably. In this review, we summarize our latest understanding of the structure of the SARS-CoV-2 S protein and discuss the implications for vaccines and therapeutics.


Assuntos
Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , Vacinas contra COVID-19/imunologia , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/fisiologia
10.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34332650

RESUMO

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

11.
bioRxiv ; 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34426810

RESUMO

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.

12.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34213308

RESUMO

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Assuntos
COVID-19/genética , Conformação Proteica , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
13.
Science ; 373(6555): 642-648, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34168070

RESUMO

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.


Assuntos
COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/química , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Receptores de Coronavírus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Viruses ; 13(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922579

RESUMO

HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.


Assuntos
Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Fusão de Membrana/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Antirretrovirais/farmacologia , Inibidores da Fusão de HIV/classificação , Infecções por HIV/virologia , Humanos
15.
bioRxiv ; 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33880477

RESUMO

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains that continue to fuel the COVID-19 pandemic despite intensive vaccination efforts throughout the world. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Mutations in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement can account for the increased transmissibility and risk of mortality as the variant may begin to infect efficiently infect additional cell types expressing low levels of ACE2. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, rendering complete resistance to some potent neutralizing antibodies. These findings provide structural details on how the wide spread of SARS-CoV-2 enables rapid evolution to enhance viral fitness and immune evasion. They may guide intervention strategies to control the pandemic.

16.
Science ; 372(6541): 525-530, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33727252

RESUMO

Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.


Assuntos
SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de Coronavírus/química , Receptores de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
17.
bioRxiv ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33758835

RESUMO

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.

18.
bioRxiv ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33758863

RESUMO

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with an unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded monoclonal antibodies (mAbs) from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found 7 major mAb competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of mAb-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. mAbs that competed for binding the original S isolate bound differentially to S variants, suggesting the protective importance of otherwise-redundant recognition. The results furnish a global atlas of the S-specific memory B cell repertoire and illustrate properties conferring robustness against emerging SARS-CoV-2 variants.

19.
Nat Struct Mol Biol ; 28(2): 202-209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432247

RESUMO

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS­CoV­2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS­CoV­2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Tratamento Farmacológico da COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/uso terapêutico , Antivirais/uso terapêutico , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Engenharia de Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , SARS-CoV-2/fisiologia
20.
Cell ; 183(6): 1508-1519.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33207184

RESUMO

The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.


Assuntos
COVID-19 , Imunidade Humoral , Imunoglobulina A/imunologia , Imunoglobulina M/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/mortalidade , Feminino , Células HL-60 , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA